skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Maignien, Lois"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Heck, Michelle (Ed.)
    ABSTRACT Plant-associated microbial assemblages are known to shift at time scales aligned with plant phenology, as influenced by the changes in plant-derived nutrient concentrations and abiotic conditions observed over a growing season. But these same factors can change dramatically in a sub-24-hour period, and it is poorly understood how such diel cycling may influence plant-associated microbiomes. Plants respond to the change from day to night via mechanisms collectively referred to as the internal “clock,” and clock phenotypes are associated with shifts in rhizosphere exudates and other changes that we hypothesize could affect rhizosphere microbes. The mustardBoechera strictahas wild populations that contain multiple clock phenotypes of either a 21- or a 24-hour cycle. We grew plants of both phenotypes (two genotypes per phenotype) in incubators that simulated natural diel cycling or that maintained constant light and temperature. Under both cycling and constant conditions, the extracted DNA concentration and the composition of rhizosphere microbial assemblages differed between time points, with daytime DNA concentrations often triple what were observed at night and microbial community composition differing by, for instance, up to 17%. While we found that plants of different genotypes were associated with variation in rhizosphere assemblages, we did not see an effect on soil conditioned by a particular host plant circadian phenotype on subsequent generations of plants. Our results suggest that rhizosphere microbiomes are dynamic at sub-24-hour periods, and those dynamics are shaped by diel cycling in host plant phenotype. IMPORTANCEWe find that the rhizosphere microbiome shifts in composition and extractable DNA concentration in sub-24-hour periods as influenced by the plant host’s internal clock. These results suggest that host plant clock phenotypes could be an important determinant of variation in rhizosphere microbiomes. 
    more » « less
  2. Bulgarelli, Davide (Ed.)
    ABSTRACT The composition of microbial communities found in association with plants is influenced by host phenotype and genotype. However, the ways in which specific genetic architectures of host plants shape microbiomes are unknown. Genome duplication events are common in the evolutionary history of plants and influence many important plant traits, and thus, they may affect associated microbial communities. Using experimentally induced whole-genome duplication (WGD), we tested the effect of WGD on rhizosphere bacterial communities in Arabidopsis thaliana . We performed 16S rRNA amplicon sequencing to characterize differences between microbiomes associated with specific host genetic backgrounds (Columbia versus Landsberg) and ploidy levels (diploid versus tetraploid). We modeled relative abundances of bacterial taxa using a hierarchical Bayesian approach. We found that host genetic background and ploidy level affected rhizosphere community composition. We then tested to what extent microbiomes derived from a specific genetic background or ploidy level affected plant performance by inoculating sterile seedlings with microbial communities harvested from a prior generation. We found a negative effect of the tetraploid Columbia microbiome on growth of all four plant genetic backgrounds. These findings suggest an interplay between host genetic background and ploidy level and bacterial community assembly with potential ramifications for host fitness. Given the prevalence of ploidy-level variation in both wild and managed plant populations, the effects on microbiomes of this aspect of host genetic architecture could be a widespread driver of differences in plant microbiomes. IMPORTANCE Plants influence the composition of their associated microbial communities, yet the underlying host-associated genetic determinants are typically unknown. Genome duplication events are common in the evolutionary history of plants and affect many plant traits. Using Arabidopsis thaliana , we characterized how whole-genome duplication affected the composition of rhizosphere bacterial communities and how bacterial communities associated with two host plant genetic backgrounds and ploidy levels affected subsequent plant growth. We observed an interaction between ploidy level and genetic background that affected both bacterial community composition and function. This research reveals how genome duplication, a widespread genetic feature of both wild and crop plant species, influences bacterial assemblages and affects plant growth. 
    more » « less